Concentrating Photovoltaic (CPV) R&D

Allan Lewandowski

Concentrating Solar Power (CSP) Peer Review November 7, 2001

Why CPV?

- CPV offers an exciting new opportunity to apply new cell technology as a viable alternative to dish Stirling engines
- CPV advantages
 - potential for >40% cell efficiency in the long term (25% now)
 - no moving parts
 - no intervening heat transfer surface
 - near-ambient temperature operation
 - no thermal mass, fast response: annual ~ peak efficiency
 concentration reduces cost of cells relative to optics

 - scalable to a range of sizes
- Various configurations possible
 - Large reflective dish with dense-packed array
 - Multiple, single cell concentrators (reflective or refractive)

Existing industrial examples

Solar Systems Ltd

- 20 kW Mark 1 (19%)
- 25 kW Mark 3 (130 m²)
- Sunpower Si cells
- Claim \$4/W installed system cost today

Amonix

- 25 kW MegaModuleTM
- 5 kW Fresnel-based modules
- High efficiency Si cells
- 500 kW planned for APS
- 16% average AC efficiency

Current Activities

- Flux uniformity
 - Uniform flux maximizes system performance

 - more important for dense-packed arrays
 wired in series, cell with lowest flux drives array output
- Receiver development
 - Improvements in current dense-packed arrays
 - packing factor and packaging
 thermal control
 - Innovative new designs
- System development
 - CTek/APS 2 kW dish
 - Amonix and/or Spectrolab array
 - SAIC dish retrofit/redesign for CPV

Flux Uniformity Status

- Evaluated and documented subcontracted analysis for reflective dishes with dense packed arrays
 - Duke Solar
 - refractive secondaries
 - Optical Research Associates
 - reflective secondaries, primary shape modifications
- Plenty of good ideas but will need to wait until programmatic funding issues resolved

Duke Solar

Refractive TIR mixer

Uniformity results

Optical Research Associates

Sensitivity to Changing Length of Secondary Tube

Receiver design status

- Solicitation for 1 kW modules
 - Amonix (current technology, robust cells)
 - Dense-packed Si array, module packaging, water cooling, moving forward with hardware
 - Spectrolab (high efficiency future, more developmental)
 - Dense-packed multi-junction array, module packaging, water cooling, move to hardware this FY
 - United Innovations (very high efficiency potential, highest risk)
 - Unique cavity design using multiple cells, selective filters, move to hardware this FY
- Testing of modules at HFSF
 - Designed/fabricating a secondary to deliver uniform flux

Amonix Dense-Packed Array

Quad array delivered to Ctek

Spectrolab Dense-Packed Array

High-efficiency multi-junction cells

United Innovations Concept

Secondary for CPV Testing at HFSF

Truncated pyramid, reflective walls

Predicted flux map from SolTrace

System Development Status

- CTek dish installed at NREL
 - Dish, drive, controller in September
 - Array, secondary, sun sensor expected December
 - APS trailer to follow
- Current test activities
 - Dish facet alignment
 - Flux mapping of primary
- Planned tests
 - Flux mapping of secondary
 - Array performance
- SAIC Dish redesign

CTek

Flux maps

2f alignment

Post 2f

SAIC Dish

Prototype CPV demonstration planned

New dish design can be tailored for CPV

Opportunities and Issues

- Continue component performance improvement
- Integrate components into improved systems
- Demonstrate performance and reliability
- Scale up to larger sizes
- Should continue a range of concepts
 - Multiple mini-concentrators
 - Dense-packed array systems
 - Innovative receiver designs
 - Expand thermal control activities
 - apply new technology to cooling of arrays